1. A solution contains $0.0134 \mathrm{~mol} / \mathrm{L}$ of calcium hydroxide. a) What concentration of ions are in solution? b) Using your answer from a , what is the pH of this solution?

Double Displacement Reactions:

2. Which of the following compounds are insoluble $\mathrm{AgI}^{2}, \mathrm{Na}_{2} \mathrm{SO}_{4}, \mathrm{KNO}_{3}, \mathrm{NaOH}, \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$ in water?
3. Write the ionic equation, net ionic equation and identify the spectator ions in the following reactions:
a) $\mathrm{KCl}{ }_{(a q)}+\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2(a q)} \rightarrow \mathrm{PbCl}_{2(s)}+\mathrm{KNO}_{3(a q)}$ (unbalanced)
b) $\mathrm{HCl}{ }_{(a q)}+\mathrm{Na}_{2} \mathrm{~S}_{(\mathrm{aq})} \rightarrow \mathrm{H}_{2} \mathrm{~S}+\mathrm{NaCl}$ (unbalanced, missing states)
c) $\mathrm{KOH}(a q)+\mathrm{HNO}_{3(a q)} \rightarrow$
d) $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2(a)}+\mathrm{Na}_{2} \mathrm{SO}_{4(a q)} \rightarrow$
4. When $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}(a q)$ and $\mathrm{KI}{ }_{(a q)}$ solutions are mixed, what is the precipitate and which species are spectator ions?

Making Solutions:

5. Your first task as a lab technician is to prepare five 1000 mL volumetric flasks, each containing 1.00 L of 0.100 M HCl . You have a solution of concentrated HCl , which is 11.6 M . What volume of concentrated acid will you add to each flask?
6. An experiment calls for 200 mL of 2.0 M HCl . If you had a 9.0 M stock solution of HCl on hand, how many mL of this solution would be required? What lab steps would you take to make this solution?
7. A lab requires 250 mL of a $0.8 \mathrm{~mol} / \mathrm{L}$ solution of sodium hydroxide. What lab steps would you take (include any calculations that you would need) to make this solution. Sodium hydroxide is a solid.

Stoichiometry in Solution Chemistry:

8. Over the years, the thermite reaction has been used for welding railroad rails, in incendiary bombs, and to ignite solid-fuel rocket motors. The reaction is: $\mathrm{Fe}_{2} \mathrm{O}_{3}(s)+2 \mathrm{Al}{ }_{(s)} \rightarrow 2 \mathrm{Fe}{ }_{(1)}+\mathrm{Al}_{2} \mathrm{O}_{3}$ (s) What masses of iron(III) oxide and aluminum must be used to produce 15.0 g of iron?
9. Calculate the mass of precipitate formed when 45.00 mL of 0.200 M NaOH and 22.50 mL of $0.150 \mathrm{M} \mathrm{Cr}\left(\mathrm{NO}_{3}\right)_{3}$ are mixed. $\mathrm{Cr}\left(\mathrm{NO}_{3}\right)_{3(a q)}+3 \mathrm{NaOH}_{(a q)} \rightarrow \mathrm{Cr}(\mathrm{OH})_{3(s)}+3 \mathrm{NaNO}_{3}(a q)$
10. A solution containing 3.44 g of AgNO_{3} is mixed with a solution containing 4.22 g of $\mathrm{K}_{3} \mathrm{PO}_{4}$. A precipitate of $\mathrm{Ag}_{3} \mathrm{PO}_{4}$ forms. What mass of $\mathrm{Ag}_{3} \mathrm{PO}_{4}$ is produced?
11. 100.0 mL of 0.200 M aqueous potassium hydroxide is mixed with 100.0 mL of 0.200 M aqueous magnesium nitrate. What mass of magnesium hydroxide is formed? Challenge: What is/are the concentration of any ions remaining in solution?

Acid-Base Reactions:

12. Calculate the molarity of a sodium hydroxide solution if 10.42 mL of this solution are needed to neutralize 25.00 mL of 0.2042 M oxalic acid. $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}($ (q) $)+2 \mathrm{NaOH}_{(a q)} \rightarrow$
13. a) 10.0 mL of a $3.0 \mathrm{M} \mathrm{KOH}_{(a q)}$ is transferred to a 250 mL volumetric flask and diluted to the mark. Calculate the concentration.
b) It was found that 38.5 mL . of this diluted solution (part a) was needed to reach the equivalence point in a titration of 10.0 mL of a $\mathrm{H}_{3} \mathrm{PO}_{4}$ solution according to the reaction: KOH (aq) $+\mathrm{H}_{3} \mathrm{PO}_{4}(a q) \rightarrow$ What is the molar concentration of the $\mathrm{H}_{3} \mathrm{PO}_{4}$ in solution?
