Gases Review #2

Name:

1. What are the five gas laws and their names?
By le's Law P.V: =
$$P_2 V_2$$

Charles' Low $\frac{V_1}{T_1} = \frac{V_2}{T_2}$ (dea) $PY = nRT$
Gay - Lusse c $\frac{P_1}{T_1} = \frac{P_1}{T_2}$
2. A sample of gas has a pressure of 128 k/k at 297 °C. To what Celsius temperature must the gas be heated to double its pressure of 128 k/k at 297 °C. To what Celsius temperature must the gas be heated to double its pressure of 128 k/k at 297 °C. To what Celsius temperature must the gas be heated to double its pressure of 128 k/k at 297 °C. To what Celsius temperature must the gas be heated to double its pressure of 128 k/k at 297 °C. To what Celsius temperature must the gas be heated to double its pressure of 128 k/k at 297 °C. To what Celsius temperature must the gas be heated to double its pressure if there is no charge in the volume of the gas? $V = constraint$
 $P_1 = 128 k/R$
 $T_2 = 2.54 k/R$ $T_2 = \frac{P_2}{T_1}$ $T_1 = \frac{P_2}{T_2}$ $T(e_c) = 1140.3 K - 273 15$
 $P_2 = 2.54 k/R$ $T_2 = \frac{P_2}{P_1}$ $T_1 = \frac{P_2}{P_1}$ $E = 867.15°C$
 $= \frac{(256 k/R_3)(570.15'k)}{128 k/R_3}$ $= 867.15°C$
 $= \frac{128 k/R_3}{128 k/R_3}$ $= 1140.3 K$
3. What volume in liters does 1.67 g of N₂ occups at 22.0° c and 101 k/P₂
 $P = nRT$ P_1 $P_2 = nRT$ P_2 P_3 P_4 P_1 P_2 P_2 P_3 P_4 P_1 P_2 P_2 P_3 P_4 P_1 P_2 P_2 P_3 P_4 P_1 P_1 P_1 P_2 P_2 P_3 P_4 P_1 P_1 P_2 P_2 P_3 P_4 P_1 P_1 P_2 P_2 P_3 P_4 P_1 P_1 P_1 P_2 P_2 P_3 P_4 P_1 P_1 P_2 P_1 P_1 P_2 P_2 P_3 P_4 P_1 P_2 P_1 P_1 P_2 P_2 P_3 P_4 P_1 P_2 P_1 P_2 P_2 P_3 P_4 P_1 P_2 P_2 P_3 P_4 P_1 P_2 P_1 P_2 P_1 P_2 P_2 $P_$

1

5. Nitric acid is formed when NO₂ is dissolved in water. What volume of NO₂ at 25.0 °C and 100.0 kPa are needed to form 12.0 g of HNO₃?

$$3 NO_{2} (g) + H_{2} O (I) \rightarrow 2 H NO_{3} (aq) + NO (g)$$

$$V = ?$$

$$I = 273.15 + 25$$

$$M = 63.012 g/mcl$$

$$P = 100.0 KPd$$

$$V = \frac{nRT}{P}$$

$$V = \frac{(0.2857mc)(8.314)(2.96.15)}{100.0 KPq}$$

$$V = \frac{(0.2857mc)(8.314)(2.96.15)}{100.0 KPq}$$

$$= 0.1904 mcl$$

$$I = 0.1904 mcl$$

$$I = 0.2857 mcl$$

$$PV = nRT$$

$$V = \frac{hRT}{P}$$
6. Your friend missed the class lesson on Charles' Law. Explain in words and with the help of a diagram/graph why temperature units need to be converted into Kelvin from Celsius.

* to get graph to go through the origin add 273.15 to °C

7. Your same friend missed the class on Boyle's Law. Explain in words and with the help of a diagram/graph why pressure units need to be converted to 1/P.

