\qquad

1. What are the five gas laws and their names?

Boyle's Law $P_{1} V_{1}=P_{2} V_{2}$
Combined $\frac{P_{1} V_{1}}{T_{1}}=\frac{P_{2} V_{2}}{T_{2}}$
Charles' Law $\quad \frac{V_{1}}{T_{1}}=\frac{V_{2}}{T_{2}}$
Ideal

$$
P V=n R T
$$

$$
\text { Gay-Lussac } \quad \frac{P_{1}}{T_{1}}=\frac{P_{2}}{T_{2}}
$$

2. A sample of gas has a pressure of 128 kPa at $297^{\circ} \mathrm{C}$. To what Celsius temperature must the gas be heated to double its pressure if there is no change in the volume of the gas? $V=$ con $5 \tan t$

$$
\begin{array}{rlrl}
P_{1} & =128 \mathrm{KPa} \\
T_{1} & =297+273.15 & \frac{P_{1}}{T_{1}} & =\frac{P_{2}}{T_{2}} \\
& =570.15 & T\left({ }^{\circ} \mathrm{C}\right)=1140.3 \mathrm{~K}- \\
P_{2} & =256 \mathrm{KPa} & T_{2} & =\frac{P_{2} T_{1}}{P_{1}} \\
T_{2} & =73.15 \\
& =\frac{(256 \mathrm{KPa})(570.15 \mathrm{~K})}{128 \mathrm{KPa}} & =867.15^{\circ} \mathrm{K} \\
& =1140.3 \mathrm{~K}
\end{array}
$$

3. What volume in liters does 1.67 g of N_{2} occupy ot $22.0^{\circ} \mathrm{C}$ and 101 kPa ?

$$
\begin{array}{rlrl}
h & =\frac{m}{M} & P V & =n R T \\
& =\frac{1.67 \mathrm{~g}}{28.014 \mathrm{~g} / \mathrm{mol}} & V & =\frac{n R T}{P} \\
& =0.05961 \mathrm{~mol} & & (0.05961 \mathrm{~mol})\left(8.314 \cdot \frac{\mathrm{kPa} \cdot \mathrm{~m}}{\mathrm{maik}}\right)(295.15 \mathrm{~K}) \\
T & =22^{\circ} \mathrm{C}+273.15 \\
& =295.15 & & 101 \mathrm{kPa} \\
P & =101 \mathrm{KPa}
\end{array}
$$

4. A sample of carbon dioxide has a volume of 26.5 mL at $20.0^{\circ} \mathrm{C}$ and 83 kPa . How many grams of CO_{2} are in the sample?

$$
\begin{aligned}
V & =26.5 \mathrm{~mL} \\
& =0.0265 \mathrm{~L} \\
T & =20.0+273.15 \\
& =293.15 \mathrm{~K} \\
P & =83 \mathrm{FPa} \\
M_{C O_{2}} & =44.004 \mathrm{~g} / \mathrm{mol}
\end{aligned}
$$

$$
\begin{aligned}
& P V=n R T \\
& n=\frac{P V}{R T} \\
& =\frac{(83 \mathrm{kP4})(0.0265 L)}{(8.314)(293.15 \mathrm{~K})} \\
& =0.00090245 \mathrm{mc}
\end{aligned}
$$

$$
\begin{aligned}
m & =n \times M \\
& =0.00090245 \mathrm{~mol} x \\
& 44.00 \frac{9 \mathrm{~g}}{\mathrm{mc}} \\
& =0.0397 \mathrm{~g} \\
& =0.040 \mathrm{~g}
\end{aligned}
$$

5. Nitric acid is formed when NO_{2} is dissolved in water. What volume of NO_{2} at $25.0^{\circ} \mathrm{C}$ and 100.0 kPa are needed to form 12.0 g of HNO_{3} ?

$$
\begin{aligned}
\mathrm{n}_{\mathrm{HNO}}^{3} & =\frac{12.0 \mathrm{~g}}{63.012 \mathrm{~g} / \mathrm{mol}} \\
& =0.1904 \mathrm{~mol}
\end{aligned}
$$

$$
\begin{aligned}
& \text { no }_{3}=0.1904 \mathrm{~mol} \mathrm{TNO}_{3} \times \frac{3 \mathrm{molNo}}{2} \\
& 2 \mathrm{mal} \mathrm{HNO}_{3} \\
&=0.2857 \mathrm{~ms})
\end{aligned}
$$

$$
\begin{aligned}
P V & =n R T \\
V & =\frac{n R T}{P}
\end{aligned}
$$

6. Your friend missed the class lesson on Charles' Law. Explain in words and with the help of a diagram/graph why temperature units need to be converted into Kelvin from Celsius.

-273.15

* to get graph to go through the origin add 273.15 to ${ }^{\circ} \mathrm{C}$

7. Your same friend missed the class on Boyle's Law. Explain in words and with the help of a diagram/graph why pressure units need to be converted to $1 / P$.

* $1 / p$ to get a linear graph that goes through the origin.

$$
\begin{aligned}
& 3 \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow 2 \mathrm{HNO}_{3}(\mathrm{aq})+\mathrm{NO}(\mathrm{~g}) \\
& V=? \quad 12.0 \mathrm{~g} \\
& T=273.15+25 \\
& M=63.012 \mathrm{~g} / \mathrm{mc} \\
& P=100.0 \mathrm{KP} P_{4} \\
& V=\frac{n R T}{P} \\
& V=\frac{(0.2857 \mathrm{ma})(8.314)(298.15)}{100.0 \mathrm{kPa}} \\
& =7.08 \mathrm{~L}
\end{aligned}
$$

