Warmup: Calculating Equilibrium Concentrations

Nitrogen gas and hydrogen gas react to produce ammonia
\qquad
$\mathrm{N}_{2(\mathrm{~g})}+$ \qquad $\mathrm{H}_{2(\mathrm{~g})} \leftrightharpoons$ \qquad $\mathrm{NH}_{3(\mathrm{~g})}$

If 0.750 mol of nitrogen and 2.250 mol of hydrogen are placed in a 5.0 L vessel, what is the equilibrium constant if the equilibrium mixture contains 0.060 mol of ammonia?

Amount			
Initial			
Change			
Equilibrium			

Station \#1

When 1.0 mol CO and $3.0 \mathrm{~mol}_{2}$ are placed in a 10.00 L vessel and allowed to come to equilibrium the mixture is found to contain $0.387 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}$. Calculate the K for the reaction.

$$
\ldots \mathrm{CO}_{(\mathrm{g})}+\ldots \mathrm{H}_{2(\mathrm{~g})} \leftrightharpoons \ldots \mathrm{CH}_{4(\mathrm{~g})}+\ldots \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}
$$

Amount				
Initial				
Change				
Equilibrium				

Station \#2

At $25^{\circ} \mathrm{C}$ the value of $\mathrm{K}_{\text {eq }}$ for the following reaction is 82

$$
\ldots \mathrm{I}_{2(\mathrm{~g})}+\ldots \mathrm{Cl}_{2(\mathrm{~g})} \leftrightharpoons \ldots \mathrm{ICl}_{(\mathrm{g})}
$$

If 0.83 moles of both $\mathrm{I}_{2(g)}$ and $\mathrm{Cl}_{2(g)}$ are placed in a 10.0 L container at $25^{\circ} \mathrm{C}$, what are the concentrations of the three gases at equilibrium?

Amount			
Initial			
Change			
Equilibrium			

The $K_{\text {eq }}$ for the following reaction is 4.8

$$
\ldots \mathrm{SO}_{2(\mathrm{~g})}+\ldots \mathrm{NO}_{2(\mathrm{~g})} \leftrightharpoons \ldots \mathrm{NO}_{(\mathrm{g})}+\ldots \mathrm{SO}_{3(\mathrm{~g})}
$$

In a 1.0 L container the chemist added $1.7 \times 10^{-1} \mathrm{~mol}$ of $\mathrm{SO}_{2(g)}$ to $1.1 \times 10^{-1} \mathrm{~mol}$ of $\mathrm{NO}_{2(g)}$. What are the equilibrium concentrations of all four gasses?

Amount				
Initial				
Change				
Equilibrium				

Station \#4

When nitrogen gas and chlorine gas react to form nitrogen trichloride gas, $\mathrm{K}_{\text {eq }}=4.15 \times 10^{-5}$.

$$
\ldots \mathrm{N}_{2(g)}+\ldots \mathrm{Cl}_{2(g)} \leftrightharpoons \ldots \mathrm{NCl}_{3(g)}
$$

If 2.74 mol of nitrogen gas and 0.84 mol of chlorine gas are put in a 2.0 L reaction vessel, what is the equilibrium concentration of the nitrogen trichloride?

Amount			
Initial			
Change			
Equilibrium			

