SCH 3 U - Avogadro's Constant Problem Set

Helpful hint:

1. A small pin contains 0.0178 mol of iron. How many atoms of iron are in the pin?
2. A sample contains 0.02 mol of gold. How many atoms of gold are in the sample?
3. A sample of $\mathrm{Al}_{2} \mathrm{O}_{3}$ contains 7.71×10^{24} formula units. How many moles of aluminum oxide are there?
4. How many formula units are contained in 0.21 mol of magnesium nitrate?
5. A vat of cleaning solution contains 8.03×10^{26} molecules of ammonia $\left(\mathrm{NH}_{3}\right)$. How many moles of ammonia are in the vat?
6. A litre of water contains 55.6 mol of water. How many molecules of water are in the sample?
7. A typical bottle of nail polish remover contains 2.5 mol of ethyl acetate $\left(\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}\right)$.
a. How many molecules of ethyl acetate are in the bottle?
b. How many atoms are in the bottle?
c. How many carbon atoms are in the bottle?
8. Consider a 0.829 mol sample of sodium sulfate $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$.
a. How many formula units are in the sample?
b. How many sodium ions are in the sample?
9. A sample of cyanic acid HCN , contains 1.11×10^{22} molecules. How many moles of cyanic acid are in the sample?
10. CHALLENGE QUESTION: A sample of pure acetic acid, $\mathrm{CH}_{3} \mathrm{COOH}$, contains 1.40×10^{23} carbon atoms.
a. How many molecules of acetic acid are there? Hint: think about how many carbon atoms are in each molecule.
b. How many moles of acetic acid are there?

ANSWERS:

1. 1.07×10^{22} atoms
2. 3.1×10^{22} atoms

25	molecules	7. a) 1.5×10^{24} molecules b) 12.8×10^{25} atoms	$4.1 .3 \times 10^{23}$ formula units	c) $6.0 \times 10^{24} \mathrm{C}$ atoms	5. $1.33 \times 10^{3} \mathrm{~mol}$
8.a) 4.99×10^{23} formula units	b) $9.98 \times 10^{23} \mathrm{Na}^{+}$ions	9.0 .0184 mol	$10 . a) \mathrm{N}=7.00 \times 10^{22}$ molecules	b) 0.116 mol	

SCH 3U - Avogadro's Constant Problem Set

Helpful hint:

1. A small pin contains 0.0178 mol of iron. How many atoms of iron are in the pin?
2. A sample contains 0.02 mol of gold. How many atoms of gold are in the sample?
3. A sample of $\mathrm{Al}_{2} \mathrm{O}_{3}$ contains 7.71×10^{24} formula units. How many moles of aluminum oxide are there?
4. How many formula units are contained in 0.21 mol of magnesium nitrate?
5. A vat of cleaning solution contains 8.03×10^{26} molecules of ammonia $\left(\mathrm{NH}_{3}\right)$. How many moles of ammonia are in the vat?
6. A litre of water contains 55.6 mol of water. How many molecules of water are in the sample?
7. A typical bottle of nail polish remover contains 2.5 mol of ethyl acetate $\left(\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}\right)$.
a. How many molecules of ethyl acetate are in the bottle?
b. How many atoms are in the bottle?
c. How many carbon atoms are in the bottle?
8. Consider a 0.829 mol sample of sodium sulfate $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$.
a. How many formula units are in the sample?
b. How many sodium ions are in the sample?
9. A sample of cyanic acid HCN, contains 1.11×10^{22} molecules. How many moles of cyanic acid are in the sample?
10. CHALLENGE QUESTION: A sample of pure acetic acid, $\mathrm{CH}_{3} \mathrm{COOH}$, contains 1.40×10^{23} carbon atoms.
a. How many molecules of acetic acid are there? Hint: think about how many carbon atoms are in each molecule.
b. How many moles of acetic acid are there?

ANSWERS:

2. 1.07×10^{22} atoms \quad 2. 1×10^{22} atoms \quad 3. $12.8 \mathrm{~mol} \quad 4.1 .3 \times 10^{23}$ formula units $\quad 5.1 .33 \times 10^{3} \mathrm{~mol}$ 6. 3.35×10^{25} molecules 7 . a) 1.5×10^{24} molecules b) 2.1×10^{25} atoms \quad c) $6.0 \times 10^{24} \mathrm{C}$ atoms 8.a) 4.99×10^{23} formula units b) $9.98 \times 10^{23} \mathrm{Na}^{+}$ions $\left.9.0 .0184 \mathrm{~mol} \quad 10 . a\right) \mathrm{N}=7.00 \times 10^{22}$ molecules b) 0.116 mol
