2. c 3.d
3. $m=10.0 \mathrm{~g}, \Delta \mathrm{~T}=1.00^{\circ} \mathrm{C}$
$Q=m c \Delta T$
$=10.0 \mathrm{~g} \times 4.19 \mathrm{~J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C} \times 1.00^{\circ} \mathrm{C}$
$=41.9 \mathrm{~J}$

The correct answer is b.
5. The mass of the sample does not affect the answer.
$C=2.337 \mathrm{~kJ} /{ }^{\circ} \mathrm{C} \quad \Delta \mathrm{T}=3.03{ }^{\circ} \mathrm{C}$
$Q=C \Delta T$
$=2.337 \mathrm{~kJ} /{ }^{\circ} \mathrm{C} \times 3.03{ }^{\circ} \mathrm{C}$
$=7.08 \mathrm{~kJ}$
The correct answer is b.
6. \% efficiency $=40.0 \mathrm{~kJ} / 50.0 \mathrm{~kJ} \times 100 \%=80.0 \%$

The correct answer is c.
7.e
8. Reverse equation (1) and add equation (2) to it.

Cancel compounds found on opposite sides of the equations.
$-1(1) A+2 C \rightarrow A C_{2} \Delta H^{\circ}=-50 \mathrm{~kJ}$
(2) $A C_{2}+B \rightarrow B C_{2}+A \Delta H^{\circ}=-20 \mathrm{~kJ}$
$2 C+B \rightarrow B C_{2} \Delta H^{\circ}=-70 \mathrm{~kJ}$
The correct answer is a.
9.e
10. It takes 31.8 kJ to decompose 1 mol of $\mathrm{Ag}_{2} \mathrm{~S}$.

Find the number of moles. $n=m / M$
$M=2 \times 107.868 \mathrm{~g} / \mathrm{mol}+32.065 \mathrm{~g} / \mathrm{mol}=247.801 \mathrm{~g} / \mathrm{mol}$

```
n=123.9 g < 1 mol}/247.801 g=0.5000 mol
Q = n\DeltaHr
= 0.5000 mol \times 31.8 kJ/mol
=15.9 kJ
```

The correct answer is a.
14. $\mathrm{nAlCl}_{3}=6.85 \mathrm{~g} \times 1 \mathrm{~mol} / 133.341 \mathrm{~g}=0.051372 \mathrm{~mol}$
$\Delta H^{\circ}=n \Delta H$ soln
$=0.051372 \mathrm{~mol} \times(-373.8 \mathrm{~kJ} / \mathrm{mol})$
$=-19.2029 \mathrm{~kJ}$
Heat absorbed by water $=19.2029 \mathrm{~kJ}=19202.9 \mathrm{~J}$
$Q=m c \Delta T$
$19202.9 \mathrm{~J}=255.0 \mathrm{~g} \times 4.19 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C} \times \Delta \mathrm{T}$
$\Delta T=17.973^{\circ} \mathrm{C}$
$\mathrm{Tf}-\mathrm{Ti}=17.973^{\circ} \mathrm{C}$
$48.7^{\circ} \mathrm{C}-\mathrm{Ti}=17.973^{\circ} \mathrm{C}$
$\mathrm{Ti}=30.7^{\circ} \mathrm{C}$
15. $\mathrm{I}_{2}(\mathrm{~s})+20.85 \mathrm{~kJ} \rightarrow \mathrm{I}_{2}(\mathrm{I})$
16. $\Delta H^{\circ} r=\left[\Sigma\left(n \Delta H^{\circ} f\right.\right.$ products $\left.)\right]-\left[\Sigma\left(n \Delta H^{\circ}\right.\right.$ f reactants $\left.)\right]$
$\Delta H^{i} r=\left[(1 \mathrm{~mol})\left(\Delta \mathrm{H}^{\circ} \mathrm{f} \mathrm{C}_{2} \mathrm{H}_{2}(\mathrm{~g})\right)+(1 \mathrm{~mol})\left(\Delta \mathrm{H}^{\circ} \mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{~s})\right)\right]-\left[\left(1 \mathrm{~mol}^{2}\right)\left(\Delta \mathrm{H}^{\circ} \mathrm{f} \mathrm{CaC} 2(\mathrm{~s})\right)+(2\right.$ $\left.\mathrm{mol})\left(\Delta \mathrm{H}^{\circ} \mathrm{F} \mathrm{H}_{2} \mathrm{O}(\mathrm{I})\right)\right]$
$-128.0 \mathrm{~kJ}=[(1 \mathrm{~mol})(227.4 \mathrm{~kJ} / \mathrm{mol})+(1 \mathrm{~mol})(-985.2 \mathrm{~kJ} / \mathrm{mol})]-\left[(1 \mathrm{~mol})\left(\Delta \mathrm{H}^{\circ} \mathrm{CaC2}(\mathrm{~s})\right)+(2 \mathrm{~mol})(-\right.$ $285.8 \mathrm{~kJ} / \mathrm{mol})$]
$\Delta \mathrm{H}^{\circ} \mathrm{CaC2}(\mathrm{~s})=-58.2 \mathrm{~kJ} / \mathrm{mol}$
17. Δ Hneutralization $=-55.31 \mathrm{~kJ} / \mathrm{mol}$ of $\mathrm{HNO}_{3}(\mathrm{aq})$
$n\left(\mathrm{HNO}_{3}(\mathrm{aq})\right)=0.0500 \mathrm{~mol} / \mathrm{L} \times 0.400 \mathrm{~L}=0.0200 \mathrm{~mol}$
Δ Heut $=Q / n$
$-55.31 \mathrm{~kJ}=\mathrm{Q} / 0.0200 \mathrm{~mol}$
$Q=1.1062 \mathrm{~kJ}=1106.2 \mathrm{~J}$

Heat absorbed by solutions:

Qsoln $=1$ 106.2 $\mathrm{J}=\mathrm{mc} \Delta \mathrm{T}$
$\Delta T=19.00^{\circ} \mathrm{C}-18.67^{\circ} \mathrm{C}=0.33^{\circ} \mathrm{C}$
1106.2. $\mathrm{J}=\mathrm{m} \times 4.19 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C} \times 0.33^{\circ} \mathrm{C}$

Total mass of solutions $=\mathrm{m}=800.0289 \mathrm{~g}=800.0 \mathrm{~g}$

Total volume of solutions $=800.0 \mathrm{~g} \times 1.000 \mathrm{~g} / \mathrm{mL}=800.0 \mathrm{~mL}$

Volume of KOH solution $=800.0 \mathrm{~mL}-400.0 \mathrm{~mL}=400.0 \mathrm{~mL}$
18. (1) $\times-1 / 2: 2 \mathrm{NO}(\mathrm{g})+3 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{N}_{2} \mathrm{O}_{5}(\mathrm{~g}) \Delta \mathrm{H}=-223.7 \mathrm{~kJ}$
$(2) \times-1: 2 \mathrm{NO}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \Delta \mathrm{H}=114.2 \mathrm{~kJ}$
$2 \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{N}_{2} \mathrm{O}_{5}(\mathrm{~g}) \Delta \mathrm{Hr}=-109.5 \mathrm{~kJ}$

